
Extensible Multi Agent System for Heterogeneous
Database Unification Using Parallel Task and

Segmentation Algorithm
1 A.Ramar 2 M.Elamparuthi

1Research Scholar, Sree Saraswathi Thyagaraja College, Pollachi.
2Assistant Professor, Department of Computer Science, Sree Saraswathi Thyagaraja College, Pollachi.

Abstract – Knowledge Discovery Databases (KDD) has
evolved to become a well established technology that has many
commercial applications. It encompasses sub fields such as
classification, clustering, and rule mining. However, it still
poses many challenges to the research community. New
methodologies are needed in order to mine more interesting
and specific information from larger datasets. New techniques
are needed to harmonize more effectively the steps of the
Knowledge Discovery in Databases process. New solutions are
required to manage the complex and heterogeneous sources of
information that are today available for the analysis.
Knowledge Discovery Databases is concerned with the
extraction of hidden knowledge from data. Extendibility also
implies flexibility, and Multi Agent Data Mining should
support the inclusion of existing as well as future Data Mining
technology (otherwise the Multi Agent Data Mining will
rapidly be rendered inadequate and therefore obsolete).
Essentially adding a new data source or Data Mining
technique to a Multi Agent Data Mining should equate to the
introduction of new agents.

Keywords: Knowledge Discovery in Database, Multi Agent
Systems, Extendible Multi Agent Data mining System.

1. INTRODUCTION

In general, extendibility can be defined as the ease with
which software can be modified to adapt to new
requirements, or changes in existing requirements. In the
context of Multi Agent Data Mining extendibility is defined
as the ease with which new data sources and new Data
Mining techniques can be introduced to the framework.
Extendibility also implies flexibility, and Multi Agent Data
Mining should support the inclusion of existing as well as
future Data Mining technology (otherwise the Multi Agent
Data Mining will rapidly be rendered inadequate and
therefore obsolete). Essentially adding a new data source or
Data Mining technique to a Multi Agent Data Mining
should equate to the introduction of new agents.

There are several reasons to ask for extendibility. For
example, a piece of existing software may do nearly the
right thing, but needs some addition to meet a new
requirement. Or it may do the right thing, but needs to be
wrapped up to provide easier handling and integration into
other software components. Or, as in the Extendible Multi
Agent Data Mining System case, the need to add new
functionalities which make use of the services already
provided. There are several methods in the literature
available to provide extendibility, including:

Software Wrappers: Software wrapping refers to a re-
engineering technique that surrounds a software component
or tool with a new software layer to hide the internal code
and the logic of the component or tool and to supply
modern interfaces. One example of software wrapping is
the reuse of legacy software in modern applications, where
the unwanted complexity of the old software is hidden to
the applications. Software wrapping re-moves the
mismatch between the interfaces exported by a legacy
software “artifact” and the interfaces required by the
current software program. The advantage of wrapping is
that the added component becomes part of the system
without changing the content of the component. Using
wrappers can greatly reduce the amount of work required to
build new functionalities.
Libraries: Libraries are an alternative mechanism for
providing a reusable abstraction of code. Libraries also
known as an archives, consists of a set of routines which
are copied into a target application by the compiler, or
linker producing object files and a stand-alone executable
file. This process is known as a build of the target
application. However, unlike wrappers, a library leaves
control in the hands of the programmer. Since they do not
provide any flow control by themselves, complex
interactions must be built from scratch.
Plug-ins: Plug-ins is miniature programs that “plug into” a
host program for additional functionality. Plug-ins allows a
third-party application to be used within the host program,
acting as a kind of liaison or bridge. Plug-ins is a widely-
used approach to provide application extendibility. For
example, makers of popular software such as Adobe and
Mozilla provide plug-in architectures for their applications.
Plug-ins is required to interact with the host application
through an API which provides access to a subset of the
host’s functionality. Unfortunately, this usually means
plug-ins can only provide restricted functionality to
enhance the host application.
Dynamic scripting: Dynamic scripting to influence
functionality is an-other way to extend applications.
Dynamic scripting is used within single applications as
extension/customization tools that allow users to
customize, connect, and control the components of the
application. Scripts are distinct from the core code of the
application, as they are usually written in a different
language and are often created or at least modified by the
end-user. Scripts are often interpreted from source code or
byte code, whereas the applications they control are

A.Ramar et al, / (IJCSIT) International Journal of Computer Science and Information Technologies, Vol. 7 (4) , 2016, 1664-1669

www.ijcsit.com 1664

traditionally compiled to native machine code. For
example, the EMACS framework allows users to define
new functionality on the fly or even redefine existing
functionality. This ability to redefine existing behaviour
makes the EMACS extendibility approach much like that of
plug-ins. Furthermore the core implementation retains
control over program flow. This approach is beneficial
because it can be interpreted at run-time instead of compile
time. However, this carries the performance penalties
associated with interpreted code.

2. EXTENDIBILITY IN EXTENDIBLE MULTI AGENT DATA

MINING SYSTEM
To ensure generality and extendibility, Extendible Multi
Agent Data Mining System is designed using object-
oriented methods and is implemented independently of any
particular machine learning program or Data Mining task.
Extendible Multi Agent Data Mining System extendible
capabilities provide the means to easily incorporate any
new Data Mining algorithm/task or data sources. The
independence of Extendible Multi Agent Data Mining
System from any particular Data Mining method, in
conjunction with the object oriented design, ensure the
framework’s capability to incorporate and use new Data
Mining algorithms/tasks or data sources. Data Mining
techniques and data sources can be embedded within
appropriate wrappers to be introduced into the Extendible
Multi Agent Data Mining System and subsequently become
an Extendible Multi Agent Data Mining System agent.
Introducing a new technique requires the use of the
appropriate wrapper to encapsulate the algorithm/technique
within an object that adheres to the minimal wrapper
interface. In fact, most of the existing implemented Data
Mining algorithms have similar interfaces already.
Extendible Multi Agent Data Mining System wrappers
define the abstract methods of the parent classes and are
responsible for invoking the executables of these
algorithms. This extendibility characteristic makes
Extendible Multi Agent Data Mining System an extendible
Data Mining facility. Evaluation of Extendible Multi Agent
Data Mining System has shown that, given an appropriate
wrapper, existing data mining software can be very easily
packaged to become an Extendible Multi Agent Data
Mining System agent. This feature of Extendible Multi
Agent Data Mining System was investigated using a
number of different scenarios. These scenarios are
discussed in later chapters.

2.1 WRAPPERS
As Extendible Multi Agent Data Mining System agents are
not intended as replacements for Data Mining algorithms or
techniques, the agents must be able to interact with the
algorithms or techniques. Generally speaking there are at
least three possible approaches to incorporating Data
Mining software. The software could be rewritten to an
appropriate form, but this is a costly approach.
Alternatively a separate piece of software could be
employed to act as an interpreter between the agent
communication language and the native protocol of the
Data Mining software. Or thirdly, the wrapper technique

could be used to augment the legacy program with code
that enables it to communicate using the inter-agent
language. As pointed out earlier, Extendible Multi Agent
Data Mining System uses the latter approach. The term
wrapper in the context of computer science has a number of
connotations (for example “driver wrappers”, “TCP
wrappers” and the “Java wrapper” classes). In the context
of Multi Agent System the term is used to describe a
mechanism for allowing existing software systems to be
incorporated into Multi Agent System. The wrapper
“agentifies” an existing application by encapsulating its
implementation. The wrapper manages the states of the
application, invoking the application when necessary.
Extendible Multi Agent Data Mining System wrappers are
used to “wrap” up Data Mining artifacts so that they
become Extendible Multi Agent Data Mining System
agents and can communicate with other agents within
Extendible Multi Agent Data Mining System. As such
Extendible Multi Agent Data Mining System wrappers can
be viewed as agents in their own right that are subsumed
once they have been integrated with data or tools to become
Data Mining agents. The wrappers essentially provide an
application interface to Extendible Multi Agent Data
Mining System that has to be implemented by the end user,
although this has been designed to be a fairly trivial
operation. Extendible Multi Agent Data Mining System
supports three broad categories of wrapper as shown in
Figure –1:

 Data wrapper.
 Data Mining wrapper.
 Task wrapper.

The first is used to create data agents, the second to create
Data Mining agents, and the third to create task agents.
Figure-1 illustrates the broad “agentification” process for
the three different kinds of agent. The figure should be
interpreted as follows:
(i) Data wrapper usage is facilitated by a GUI and normally

requires no programming.
(ii) DM wrapper usage requires extending and

implementing a Java interface.
(iii) Task wrapper usage requires extending and

implementing a Java class.

Figure-1: Extendible Multi Agent Data Mining System

Wrappers

A.Ramar et al, / (IJCSIT) International Journal of Computer Science and Information Technologies, Vol. 7 (4) , 2016, 1664-1669

www.ijcsit.com 1665

Data Wrappers: The current version of Extendible Multi
Agent Data Mining System assumes well-defined schemata
and datasets as to avoid issues of data heterogeneity. In the
context of Extendible Multi Agent Data Mining System, a
data source is a single text file containing data records (one
line per record); where each record comprises a set of,
typically comma or space separated, alpha-numeric values
that subscribe to some attribute schema. This is a fairly
standard tabular data format used throughout the
Knowledge Discovery Database community. Knowledge
Discovery Database has traditionally been concerned with
tabular data sets, reflecting the strong association between
Data Mining and relational databases. Data Mining
algorithms have generally been developed with respect
only to tabular data. A tabular format offers the advantage
of easy integration with other tabular data sets. Data
wrappers are therefore used to “wrap” a data source and
consequently create a data agent. Conceptually the data
wrap-per provides the interface between the data source
and the rest of the framework. Broadly a data wrapper
holds: (i) the location (file path) of a data source, so that it
can be accessed by other agents; and (ii) meta information
about the data (e.g. data type, number of classes). To assist
end users, in the application of a data wrapper to their data,
a data wrapper GUI was developed. As described
previously, once created, the data agent announces itself to
the Extendible Multi Agent Data Mining System facilitator
(broker) agent as a consequence of which it becomes
available to all Extendible Multi Agent Data Mining
System users. In the case of non-standard data, then the
user can use the wrapper to have the function of
reformatting the data to meet the requirements of
Extendible Multi Agent Data Mining System.

Data Mining Wrappers: Data Mining wrappers are used
to “wrap” up Data Mining software algorithms and to
create DM agents. Generally the algorithms to be wrapped
will be Data Mining techniques of various kinds
(classifiers, clusters, association rule miners, etc.) Unlike
data wrappers, Data Mining wrappers are not supported by
a GUI facility to aid their usage; instead Extendible Multi
Agent Data Mining System developers are expected to
encode the wrappers themselves. However, the wrapper
provides most of the required functionalities which makes
the en-coding to be a straight forward process.
Task Wrappers: It is intended that the framework will
incorporate a substantial number of different Data Mining
technique wrappers each defined by the nature of the
desired I/O which in turn will be informed by the nature of
the generic DM tasks that it is desirable for Extendible
Multi Agent Data Mining System to be able to perform.
Thus, Extendible Multi Agent Data Mining System
developers are expected to encode most of the operations of
the task wrappers themselves. Again, the design of the task
wrapper is such that encoding of operations is not a
significant process.
Extendible Multi Agent Data Mining System approach
offers a simple way to incorporate existing methods and
data sources into a Multi Agent Data Mining framework
and how new Data Mining tasks are wrapped and

incorporated. This section looks at what components
(agents) are affected when new requirements are added and
the extensibility of those components. In the current
architecture of Extendible Multi Agent Data Mining
System, a single data agent controls each separate data
source. The data agent in-turn encapsulates and relies on an
instance of an agent class. Thus, in order to bring a new
data source into the system, a new data agent must be
instantiated. It must also register with the system to ensure
the other agents are aware of its existence and the data
source can be utilized to fulfill system goals.
In the case of data agents, there is no code required to
create a new data agent and introduce it to Extendible Multi
Agent Data Mining System. This is achieved through the
data wrapper graphical user interface (GUI). The user must
use the GUI to refer to the data source location (file path).
Then the wrapper creates a new data agent that will
represent the data source as it is introduced to the system.
In order to bring a new Data Mining algorithm into the
Extendible Multi Agent Data Mining System, a new Data
Mining agent must be instantiated with the two required
components, namely a Data Mining wrapper and Data
Mining algorithm. The new Data Mining agent must also
be registered with the system to ensure that other agents are
aware of its existence and so that the Data Mining
algorithm can be utilized to fulfill Data Mining requests.
The independence of the Data Mining technique comes
from the fact that the wrapper agents act only as interfaces,
to the Data Mining algorithms, to receive requests and pass
back results. Because of this, the only code required to
create a new Data Mining agent and “introduce” a new
Data Mining algorithm becomes a one line instantiation as
shown below:

<Algorithm Class Name> instanceName = new <Algorithm
Class Name>();

The Data Mining wrapper contains all code required to
interface with the Data Mining algorithm. In order to
ensure all new Data Mining algorithms can communicate in
the system, an abstract interface was created. Any new
Data Mining algorithm class must extend this abstract
interface and implement the abstract methods it includes.

3. DATA SEGMENTATION AND PARTITIONING
Notwithstanding the extensive work that has been done in
the field of Association Rule Mining, there still remains a
need for the development of faster algorithms and
alternative heuristics to increase their computational
efficiency. Because of the inherent intractability of the
fundamental problem, much research effort has been
directed at parallel Association Rule Mining to decrease
overall processing times and distributed Association Rule
Mining to support the mining of datasets distributed over a
network. The main challenges associated with parallel Data
Mining include:

 Minimizing I/O.
 Minimizing synchronization and communication.
 Effective load balancing.
 Effective data layout (horizontal vs. vertical).

A.Ramar et al, / (IJCSIT) International Journal of Computer Science and Information Technologies, Vol. 7 (4) , 2016, 1664-1669

www.ijcsit.com 1666

 Good data decomposition.
 Minimizing/avoiding duplication of work.

To allow the data to be mined using a number of
cooperating agents the most obvious approach is to allocate
different subsets of the data to each agent. There are
essentially two fundamental approaches to
partitioning/segmenting the data:
(i) Horizontal segmentation where the data is divided
according to row number.
(ii) Vertical partitioning where the data is divided
according to column number.
Note that in this chapter the term partitioning is used to
indicate vertical sub-division of data, and segmentation to
indicate horizontal sub-division of data.
Horizontal segmentation is in general more straightforward.
Assuming a uniform/homogeneous dataset it is sufficient to
divide the number of records by the number of available
agents and allocate each resulting segment accordingly.
The most natural method to vertically partition a dataset is
to divide the number of columns by the number of available
agents so each is allocated an equal number of columns.
Many parallel Data Mining algorithms have been
developed based on the Apriori algorithm or variations of
the Apriori algorithm. The most common parallel methods
are:
Count Distribution: This method follows a data parallel
strategy and statically partitions the database into
horizontal partitions that are independently scanned for the
local counts of all candidate itemsets on each process. At
the end of each iteration, the local counts are summed
across all processes to form the global counts so that
frequent itemsets can be identified.
Data Distribution: The Data Distribution method attempts
to utilize the aggregate main memory of parallel machines
by partitioning both the database and the candidate
itemsets. Since each candidate itemset is counted by only
one process, all processes have to exchange database
partition during each iteration in order for each process to
get the global counts of the assigned candidate itemsets.
Candidate Distribution: The Candidate Distribution
method also partitions candidate itemsets but selectively
replicates, instead of “partition-and-exchanging” the
database transactions, so that each process can proceed
independently.
The steps for the Count Distribution method may be
generalized as follows (for distributed memory
multiprocessors):
Step-1: Divide the database evenly into horizontal
partitions among all processes.
Step-2: Each process scans its local database partition to
collect the local count of each item.
Step-3: All processes exchange and sum up the local
counts to get the global counts of all items and find
frequent 1-itemsets.
Step-4: Set level k = 2.
Step-5: All processes generate candidate k-itemsets from
the mined frequent (k-1) itemsets.
Step-6: Each process scans its local database partition to
collect the local count of each candidate k-itemset.
Step-7: All processes exchange and sum up the local

counts into the global counts of all candidate k-itemsets and
find frequent k-itemsets among them.
Step-8: Repeat (5) to (8) with k = k + 1 until no more
frequent itemsets are found.

4. THE PARALLEL TASK WITH HORIZONTAL

SEGMENTATION (DATA-HS) ALGORITHM
The Data Horizontal Segmentation (DATA-HS) algorithm
uses horizontal segmentation, dividing the dataset into
segments each containing an equal number of records.
Association Rule Mining in this case involves the
generation of a number of T-trees, holding frequent
itemsets, one for each segment; and then merging these T-
trees to create one global T-tree. As a demonstration of
Multi Agent Data Mining re-usability, this is carried out
using the Meta Association Rule Mining task agent which
is defined from the previous scenario. Assuming that a data
agent representing the large dataset has been launched by a
user, the DATA-HS Multi Agent Data Mining algorithm
comprises the following steps:
Step-1: User agent requests the task agent to horizontally
segment the dataset ac-cording to the total number of
segments required.
Step-2: The task agent assigns and sends each data
segment to an interested data agent; if none exist then the
task agent launches new data agents.

5. THE PARALLEL TASK WITH VERTICAL PARTITIONING

(DATA-VP) ALGORITHM
The second algorithm considered in the

exploration of the applicability of Multi Agent Data Mining
to parallel Association Rule Mining is the Data Vertical
Partitioning (DATA-VP). The DATA-VP algorithm
commences by distributing the input dataset over the
available number of workers (Data Mining agents) using a
vertical partitioning strategy. Initially the set of single
attributes (columns) is split equally between the available
workers so that an allocationItemSet (a sequence of single
attributes) is defined for each Data Mining agent in terms
of a startColNum and endColNum:

allocationItemSet = {n|startColNum < n ≤ endColNum}

Each Data Mining agent will have its own
allocationItemSet which is then used to determine the
subset of the input dataset to be considered by the Data
Mining agent. Using their allocationItemSet the task agent
will partition the data among the workers (DM agents) as
follows:
Step-1: Remove all records in the input dataset that do not
intersect with the allocationItemSet.
Step-2: From the remaining records remove those attributes
whose column number is greater than endColNum.
Attributes whose identifiers are less than startColNum
cannot be removed because these may still need to be
included in the sub tree counted by the Data Mining agent.
Step-3: Send the allocated data partition to the
corresponding Data Mining agent.
The input dataset distribution procedure, given an
allocationItemSet, can be summarized as follows:

A.Ramar et al, / (IJCSIT) International Journal of Computer Science and Information Technologies, Vol. 7 (4) , 2016, 1664-1669

www.ijcsit.com 1667

	∀ records ∈ input data
if (record ∩ allocationItemSet ≡ true) record = {n|n ∈
record, n ≤ endColNum} else delete record

TID Item Set
1 acf

2 b

3 ace

4 bd

5 ae

6 abc

7 d

8 ab

9 c

10 abd
 Table 6.1: Dataset

As an example, the ordered data set in Table 6.1 has items
with 6 attributes, a, b, c, d, e and f. Assuming three worker
agents are participating, the above partitioning process will
result in three dataset partitions, with allocationItemSets {a,
b}, {c, d} and {e, f}. Application of the above algorithm
will create partitions as follows (but note that the empty
sets, here shown for clarity, will in fact not be included in
the partitions):
Partition 1 (a to b): {{a}, {b}, {a}, {b}, {a}, {a, b}, {}, {a,
b}, {}, {a, b}}
Partition 2 (c to d): {{a, c}, {}, {a, c}, {b, d}, {}, {a, b, c},
{d}, {}, {c}, {a, b, d}}
Partition 3 (e to f): {{a, c, f}, {}, {a, c, e}, {}, {a, e}, {},
{}, {}, {}}

Figure-2: Vertical Partitioning of a T-tree

Once partitioning is complete each partition can be mined,
using the Apriori-T algorithm, in isolation while at the
same time taking into account the possibility of the
existence of frequent itemsets dispersed across two or more
partitions. Figure-2 shows the resulting sub T-trees
assuming all combinations represented by each partition are
supported. Note that because the input dataset is ordered
according to the frequency of 1-itemsets the size of the
individual partitioned sets does not necessarily increase as
the endColNum approaches N (the number of columns in
the input dataset); in the later partitions, the lower
frequency leads to more records being eliminated. Thus the
computational effort required to process each partition is
roughly balanced. The DATA-VP Multi Agent Data
Mining task can thus be summarized as follows:
(1) A task agent starts a number of workers (DM agents);

these will be referred to as workers.
(2) The task agent determines the division of
allocationItemSet according to the total number of
available workers (agents) and transmits this information to
them.
(3) The task agent transmits the allocated partition of the
data (calculated as described above) to each worker.
(4) Each worker then generates a T-tree for its allocated
partition (a sub T-tree of the final T-tree) using the Apriori-
T algorithm as described below.
(5) On completion each Data Mining (worker) agent
transmits its partition of the T-tree to the task agent which
is then merged into a single global T-tree (the final T-tree
ready for the next stage in the Association Rule Mining
process, rule generation).
The local T-tree generation process begins with a top-level
“tree” comprising only those 1-itemsets included in each
worker (Data Mining agent) allocationItemSet. The Data
Mining agent will then generate the candidate 2-itemsets
that belong in its sub (local) T-tree. These will comprise all
the possible pairings between each element in the
allocationItemSet and the lexicographically preceding
attributes of those elements shown in Figure 6.1. The
support values for the candidate 2-itemsets are then
determined and the sets pruned to leave only frequent 2-
itemsets. Candidate sets for the third level are then
generated. Again, no attributes from succeeding
allocationItemSet are considered, but the possible
candidates will, in general, have subsets which are
contained in preceding allocationItemSet and which,
therefore, are being counted by some other Data Mining
agents. To avoid the overhead involved in the X-checking
process, in this case would require message-passing
between the Data Mining agents concerned, X-checking
does not take place. Instead, the Data Mining agent will
generate its candidates assuming, where necessary, that any
subsets outside its local T-tree are frequent.

6. RESULTS AND DISCUSSIONS
To evaluate the two approaches, in the context of the
Extendible Multi Agent Data Mining System vision, a
number of experiments were conducted. We consider two
artificial datasets: (i) T20.D100K.N250.num, and (ii)
T20.D500K.N500.num where T = 20 (average number of
items per transactions), D = 100K or D = 500K (Number of
transactions), and N = 500 or N = 250 (Number of
attributes) are used. The datasets were generated using the
IBM Quest generator used in Agrawal and Srikant.

 (a) Number of Data Partitions (b) Support Threshold

Figure-3: Average of Execution Time for Dataset
T20.D100K.N250.num

As noted above the most significant overhead of any

A.Ramar et al, / (IJCSIT) International Journal of Computer Science and Information Technologies, Vol. 7 (4) , 2016, 1664-1669

www.ijcsit.com 1668

parallel system is the number and size of messages sent and
received between agents. For the DATA-VP Extendible
Multi Agent Data Mining System approach, the number of
messages sent is independent of the number of levels in the
T-tree; communication takes place only at the end of the
tree construction. DATA-VP passes entire pruned sub
(local) T-tree branches. Therefore, DATA-VP has a clear
advantage in terms of the number of messages sent.

 (a) Number of Data Partitions (b) Support Threshold

Figure-4: Average of Execution Time for Dataset
T20.D500K.N500.num

Figure-3 and Figure-4 show the effect of increasing the
number of data partitions with respect to a range of support
thresholds. As shown in Figure-3 the DATA-VP algorithm
shows better performance compared to the DATA-HS
algorithm. This is largely due to the smaller size of the
dataset and the T-tree data structure which: (i) facilitates
vertical distribution of the input dataset, and (ii) readily
lends it to parallelization/distribution. However, when the
data size is increased as in the second experiment, and
further Data Mining (worker) agents are added (increasing
the number of data partitions), the results shown in Figure
6.4, show that the increasing overhead of messaging size
outweighs any gain from using additional agents, so that
parallelization/distribution becomes counter productive.
Therefore DATA-HS showed better performance from the
addition of further data agents compared to the DATA-VP
approach.
6.1 Discussion
Multi Agent Data Mining can be viewed as an effective
distributed and parallel environment where the constituent
agents function autonomously and (occasionally) exchange
information with each other. Extendible Multi Agent Data
Mining System is designed with asynchronous, distributed
communication protocols that enable the participating
agents to operate independently and collaborate with other
peer agents as necessary, thus eliminating centralized
control and synchronization barriers. Distributed and
parallel Data Mining can improve both efficiency and
scalability first by executing the Data Mining processes in
parallel improving the run time efficiency and second, by
applying the Data Mining processes on smaller subsets of
data that are properly partitioned and distributed to fit in
main memory (a data reduction technique). We
demonstrated that Multi Agent Data Mining provides
suitable mechanisms for exploiting the benefits of parallel
computing; particularly parallel data processing. The
scenario also demonstrated that Multi Agent Data Mining is
suitable for re-usability and illustrated how it is supported
by re-employing the Meta Association Rule Mining task
agent with the DATA-HS task.

7. CONCLUSION
Multi Agent Data Mining method for parallel Association
Rule Mining has been described so as to explore the Multi
Agent Data Mining issues of scalability and re-usability.
Scalability is explored by parallel processing of the data
and re-usability is explored by re-employing the Meta
Association Rule Mining task agent with the DATA-HS
task. The solution to the scenario considered in this chapter
made use of a vertical data partitioning or a horizontal data
segmentation technique to distribute the input data amongst
a number of agents. In the horizontal data segmentation
(DATA-HS) method, the dataset was simply divided into
segments each comprising an equal number of records.
Each segment was then assigned to a data agent that
allowed for using the Meta Association Rule Mining task
when employed on Extendible Multi Agent Data Mining
System. Each Data Mining agent then used its local data
agent to generate a complete local T-tree for its allocated
segment. Finally, the local T-trees were collated into a
single T-tree which contained the overall frequent itemsets.
The proposed vertical partitioning (DATA-VP) was
facilitated by the T-tree data structure, and an associated
mining algorithm (Apriori-T), that allowed for
computationally effective parallel Association Rule Mining
when employed on Extendible Multi Agent Data Mining
System. The reported experimental results showed that the
data partitioning methods described are extremely effective
in limiting the maximal memory requirements of the
algorithm, while their execution time scale only slowly and
linearly with increasing data dimensions. Their overall
performance, both in execution time and especially in
memory requirements has brought significant
improvement.

REFERENCES
1. P. O’Brien and R. Nicol. FIPA - towards a standard for software agents,

volume 16, no.3, pages (51-59). BT Technology Journal, 1998.
2. R. Bordini, L. Braubach, M. Dastani, A. Seghrouchni, J. Sanz, J. Leite,

G. OHare, A. Pokahr, and A. Ricci. A survey of programming languages
and platforms for multi-agent systems. In Proceedings of the IEEE
International Conference on Cognitive Informatics, pages (33-44), 2006.

3. Reticular Systems. AgentBuilder - An integrated Toolkit for Construct-
ing Intelligence Software Agents. Acronymics, Inc., 1999. Available at
http://www.agentbuilder.com.

4. Y. Shoham. Agent-oriented programming, volume 60(1), pages (51-92).
In Proceedings of the Artificial Intelligence, Elsevier Science Publishers
Ltd. Essex, England, 1993.

5. S. Thomas. The PLACA Agent Programming Language. In Lecture
Notes in Artificial Intelligence, Springer-Verlag, Berlin, Germany, pages
(355-370), 1994.

6. S. DeLoach and M. Wood. Developing Multiagent Systems with
agentTool. In Proceedings of the Intelligent Agents VII. Agent Theories,
Architectures, and Languages - 7th International Workshop, ATAL,
Boston, MA, USA, 2000.

7. S. DeLoach. Analysis and Design using MASE and agentTool. In
Proceedings of the 12th Midwest Artificial Intelligence and Cognitive
Science Conference (MAICS), 2001.

8. M. Genesereth and S. Ketchpel. Software Agents. In Proceedings of the
Communications of the Association for Computer Machinery (ACM),
37(7), pages (48-53), 1994.

9. Munindar P. Singh. Write Asynchronous, Run Synchronous. In
Proceedings of the IEEE Internet Computing, 3(2), pages (4-5), 1999.

10 K. Sycara, A. Pannu, M. Williamson, and D. Zeng. Distributed Intelligent
Agents, volume 11(6), pages (36-46). IEEE Expert, 1996

11 WEKA. Data Mining Software in Java. The University of Waikato, New
Zealand, 1993. http://www.cs.waikato.ac.nz/ ml/weka/.

A.Ramar et al, / (IJCSIT) International Journal of Computer Science and Information Technologies, Vol. 7 (4) , 2016, 1664-1669

www.ijcsit.com 1669

