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Abstract – Knowledge Discovery Databases (KDD) has 
evolved to become a well established technology that has many 
commercial applications. It encompasses sub fields such as 
classification, clustering, and rule mining. However, it still 
poses many challenges to the research community. New 
methodologies are needed in order to mine more interesting 
and specific information from larger datasets. New techniques 
are needed to harmonize more effectively the steps of the 
Knowledge Discovery in Databases process. New solutions are 
required to manage the complex and heterogeneous sources of 
information that are today available for the analysis. 
Knowledge Discovery Databases is concerned with the 
extraction of hidden knowledge from data. Extendibility also 
implies flexibility, and Multi Agent Data Mining should 
support the inclusion of existing as well as future Data Mining 
technology (otherwise the Multi Agent Data Mining will 
rapidly be rendered inadequate and therefore obsolete). 
Essentially adding a new data source or Data Mining 
technique to a Multi Agent Data Mining should equate to the 
introduction of new agents. 

Keywords:  Knowledge Discovery in Database, Multi Agent 
Systems, Extendible Multi Agent Data mining System. 

1. INTRODUCTION

In general, extendibility can be defined as the ease with 
which software can be modified to adapt to new 
requirements, or changes in existing requirements. In the 
context of Multi Agent Data Mining extendibility is defined 
as the ease with which new data sources and new Data 
Mining techniques can be introduced to the framework. 
Extendibility also implies flexibility, and Multi Agent Data 
Mining should support the inclusion of existing as well as 
future Data Mining technology (otherwise the Multi Agent 
Data Mining will rapidly be rendered inadequate and 
therefore obsolete). Essentially adding a new data source or 
Data Mining technique to a Multi Agent Data Mining 
should equate to the introduction of new agents. 

There are several reasons to ask for extendibility. For 
example, a piece of existing software may do nearly the 
right thing, but needs some addition to meet a new 
requirement. Or it may do the right thing, but needs to be 
wrapped up to provide easier handling and integration into 
other software components. Or, as in the Extendible Multi 
Agent Data Mining System case, the need to add new 
functionalities which make use of the services already 
provided. There are several methods in the literature 
available to provide extendibility, including: 

Software Wrappers: Software wrapping refers to a re-
engineering technique that surrounds a software component 
or tool with a new software layer to hide the internal code 
and the logic of the component or tool and to supply 
modern interfaces. One example of software wrapping is 
the reuse of legacy software in modern applications, where 
the unwanted complexity of the old software is hidden to 
the applications. Software wrapping re-moves the 
mismatch between the interfaces exported by a legacy 
software “artifact” and the interfaces required by the 
current software program. The advantage of wrapping is 
that the added component becomes part of the system 
without changing the content of the component. Using 
wrappers can greatly reduce the amount of work required to 
build new functionalities. 
Libraries: Libraries are an alternative mechanism for 
providing a reusable abstraction of code. Libraries also 
known as an archives, consists of a set of routines which 
are copied into a target application by the compiler, or 
linker producing object files and a stand-alone executable 
file. This process is known as a build of the target 
application. However, unlike wrappers, a library leaves 
control in the hands of the programmer. Since they do not 
provide any flow control by themselves, complex 
interactions must be built from scratch.  
Plug-ins: Plug-ins is miniature programs that “plug into” a 
host program for additional functionality. Plug-ins allows a 
third-party application to be used within the host program, 
acting as a kind of liaison or bridge. Plug-ins is a widely-
used approach to provide application extendibility. For 
example, makers of popular software such as Adobe and 
Mozilla provide plug-in architectures for their applications. 
Plug-ins is required to interact with the host application 
through an API which provides access to a subset of the 
host’s functionality. Unfortunately, this usually means 
plug-ins can only provide restricted functionality to 
enhance the host application.  
Dynamic scripting: Dynamic scripting to influence 
functionality is an-other way to extend applications. 
Dynamic scripting is used within single applications as 
extension/customization tools that allow users to 
customize, connect, and control the components of the 
application. Scripts are distinct from the core code of the 
application, as they are usually written in a different 
language and are often created or at least modified by the 
end-user. Scripts are often interpreted from source code or 
byte code, whereas the applications they control are 
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traditionally compiled to native machine code. For 
example, the EMACS framework allows users to define 
new functionality on the fly or even redefine existing 
functionality. This ability to redefine existing behaviour 
makes the EMACS extendibility approach much like that of 
plug-ins. Furthermore the core implementation retains 
control over program flow. This approach is beneficial 
because it can be interpreted at run-time instead of compile 
time. However, this carries the performance penalties 
associated with interpreted code. 
 
2.  EXTENDIBILITY IN EXTENDIBLE MULTI AGENT DATA 

MINING SYSTEM 
To ensure generality and extendibility, Extendible Multi 
Agent Data Mining System is designed using object-
oriented methods and is implemented independently of any 
particular machine learning program or Data Mining task. 
Extendible Multi Agent Data Mining System extendible 
capabilities provide the means to easily incorporate any 
new Data Mining algorithm/task or data sources. The 
independence of Extendible Multi Agent Data Mining 
System from any particular Data Mining method, in 
conjunction with the object oriented design, ensure the 
framework’s capability to incorporate and use new Data 
Mining algorithms/tasks or data sources. Data Mining 
techniques and data sources can be embedded within 
appropriate wrappers to be introduced into the Extendible 
Multi Agent Data Mining System and subsequently become 
an Extendible Multi Agent Data Mining System agent. 
Introducing a new technique requires the use of the 
appropriate wrapper to encapsulate the algorithm/technique 
within an object that adheres to the minimal wrapper 
interface. In fact, most of the existing implemented Data 
Mining algorithms have similar interfaces already. 
Extendible Multi Agent Data Mining System wrappers 
define the abstract methods of the parent classes and are 
responsible for invoking the executables of these 
algorithms. This extendibility characteristic makes 
Extendible Multi Agent Data Mining System an extendible 
Data Mining facility. Evaluation of Extendible Multi Agent 
Data Mining System has shown that, given an appropriate 
wrapper, existing data mining software can be very easily 
packaged to become an Extendible Multi Agent Data 
Mining System agent. This feature of Extendible Multi 
Agent Data Mining System was investigated using a 
number of different scenarios. These scenarios are 
discussed in later chapters. 
 
2.1  WRAPPERS  
As Extendible Multi Agent Data Mining System agents are 
not intended as replacements for Data Mining algorithms or 
techniques, the agents must be able to interact with the 
algorithms or techniques. Generally speaking there are at 
least three possible approaches to incorporating Data 
Mining software. The software could be rewritten to an 
appropriate form, but this is a costly approach. 
Alternatively a separate piece of software could be 
employed to act as an interpreter between the agent 
communication language and the native protocol of the 
Data Mining software. Or thirdly, the wrapper technique 

could be used to augment the legacy program with code 
that enables it to communicate using the inter-agent 
language. As pointed out earlier, Extendible Multi Agent 
Data Mining System uses the latter approach. The term 
wrapper in the context of computer science has a number of 
connotations (for example “driver wrappers”, “TCP 
wrappers” and the “Java wrapper” classes). In the context 
of Multi Agent System the term is used to describe a 
mechanism for allowing existing software systems to be 
incorporated into Multi Agent System. The wrapper 
“agentifies” an existing application by encapsulating its 
implementation. The wrapper manages the states of the 
application, invoking the application when necessary. 
Extendible Multi Agent Data Mining System wrappers are 
used to “wrap” up Data Mining artifacts so that they 
become Extendible Multi Agent Data Mining System 
agents and can communicate with other agents within 
Extendible Multi Agent Data Mining System. As such 
Extendible Multi Agent Data Mining System wrappers can 
be viewed as agents in their own right that are subsumed 
once they have been integrated with data or tools to become 
Data Mining agents. The wrappers essentially provide an 
application interface to Extendible Multi Agent Data 
Mining System that has to be implemented by the end user, 
although this has been designed to be a fairly trivial 
operation. Extendible Multi Agent Data Mining System 
supports three broad categories of wrapper as shown in 
Figure –1: 

 Data wrapper.  
 Data Mining wrapper.  
 Task wrapper.  

 
The first is used to create data agents, the second to create 
Data Mining agents, and the third to create task agents. 
Figure-1 illustrates the broad “agentification” process for 
the three different kinds of agent. The figure should be 
interpreted as follows: 
(i) Data wrapper usage is facilitated by a GUI and normally 

requires no programming.  
(ii) DM wrapper usage requires extending and 

implementing a Java interface.  
(iii) Task wrapper usage requires extending and 

implementing a Java class.   
 

 
Figure-1: Extendible Multi Agent Data Mining System 

Wrappers 
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Data Wrappers:  The current version of Extendible Multi 
Agent Data Mining System assumes well-defined schemata 
and datasets as to avoid issues of data heterogeneity. In the 
context of Extendible Multi Agent Data Mining System, a 
data source is a single text file containing data records (one 
line per record); where each record comprises a set of, 
typically comma or space separated, alpha-numeric values 
that subscribe to some attribute schema. This is a fairly 
standard tabular data format used throughout the 
Knowledge Discovery Database community. Knowledge 
Discovery Database has traditionally been concerned with 
tabular data sets, reflecting the strong association between 
Data Mining and relational databases. Data Mining 
algorithms have generally been developed with respect 
only to tabular data. A tabular format offers the advantage 
of easy integration with other tabular data sets. Data 
wrappers are therefore used to “wrap” a data source and 
consequently create a data agent. Conceptually the data 
wrap-per provides the interface between the data source 
and the rest of the framework. Broadly a data wrapper 
holds: (i) the location (file path) of a data source, so that it 
can be accessed by other agents; and (ii) meta information 
about the data (e.g. data type, number of classes). To assist 
end users, in the application of a data wrapper to their data, 
a data wrapper GUI was developed. As described 
previously, once created, the data agent announces itself to 
the Extendible Multi Agent Data Mining System facilitator 
(broker) agent as a consequence of which it becomes 
available to all Extendible Multi Agent Data Mining 
System users. In the case of non-standard data, then the 
user can use the wrapper to have the function of 
reformatting the data to meet the requirements of 
Extendible Multi Agent Data Mining System. 
 
Data Mining Wrappers: Data Mining wrappers are used 
to “wrap” up Data Mining software algorithms and to 
create DM agents. Generally the algorithms to be wrapped 
will be Data Mining techniques of various kinds 
(classifiers, clusters, association rule miners, etc.) Unlike 
data wrappers, Data Mining wrappers are not supported by 
a GUI facility to aid their usage; instead Extendible Multi 
Agent Data Mining System developers are expected to 
encode the wrappers themselves. However, the wrapper 
provides most of the required functionalities which makes 
the en-coding to be a straight forward process. 
Task Wrappers: It is intended that the framework will 
incorporate a substantial number of different Data Mining 
technique wrappers each defined by the nature of the 
desired I/O which in turn will be informed by the nature of 
the generic DM tasks that it is desirable for Extendible 
Multi Agent Data Mining System to be able to perform. 
Thus, Extendible Multi Agent Data Mining System 
developers are expected to encode most of the operations of 
the task wrappers themselves. Again, the design of the task 
wrapper is such that encoding of operations is not a 
significant process. 
Extendible Multi Agent Data Mining System approach 
offers a simple way to incorporate existing methods and 
data sources into a Multi Agent Data Mining framework 
and how new Data Mining tasks are wrapped and 

incorporated. This section looks at what components 
(agents) are affected when new requirements are added and 
the extensibility of those components. In the current 
architecture of Extendible Multi Agent Data Mining 
System, a single data agent controls each separate data 
source. The data agent in-turn encapsulates and relies on an 
instance of an agent class. Thus, in order to bring a new 
data source into the system, a new data agent must be 
instantiated. It must also register with the system to ensure 
the other agents are aware of its existence and the data 
source can be utilized to fulfill system goals. 
In the case of data agents, there is no code required to 
create a new data agent and introduce it to Extendible Multi 
Agent Data Mining System. This is achieved through the 
data wrapper graphical user interface (GUI). The user must 
use the GUI to refer to the data source location (file path). 
Then the wrapper creates a new data agent that will 
represent the data source as it is introduced to the system. 
In order to bring a new Data Mining algorithm into the 
Extendible Multi Agent Data Mining System, a new Data 
Mining agent must be instantiated with the two required 
components, namely a Data Mining wrapper and Data 
Mining algorithm. The new Data Mining agent must also 
be registered with the system to ensure that other agents are 
aware of its existence and so that the Data Mining 
algorithm can be utilized to fulfill Data Mining requests. 
The independence of the Data Mining technique comes 
from the fact that the wrapper agents act only as interfaces, 
to the Data Mining algorithms, to receive requests and pass 
back results. Because of this, the only code required to 
create a new Data Mining agent and “introduce” a new 
Data Mining algorithm becomes a one line instantiation as 
shown below: 
 
<Algorithm Class Name> instanceName = new <Algorithm 
Class Name>(); 
 
The Data Mining wrapper contains all code required to 
interface with the Data Mining algorithm. In order to 
ensure all new Data Mining algorithms can communicate in 
the system, an abstract interface was created. Any new 
Data Mining algorithm class must extend this abstract 
interface and implement the abstract methods it includes. 
 

3. DATA SEGMENTATION AND PARTITIONING 
Notwithstanding the extensive work that has been done in 
the field of Association Rule Mining, there still remains a 
need for the development of faster algorithms and 
alternative heuristics to increase their computational 
efficiency. Because of the inherent intractability of the 
fundamental problem, much research effort has been 
directed at parallel Association Rule Mining to decrease 
overall processing times and distributed Association Rule 
Mining to support the mining of datasets distributed over a 
network. The main challenges associated with parallel Data 
Mining include:  

 Minimizing I/O.  
 Minimizing synchronization and communication.  
 Effective load balancing.  
 Effective data layout (horizontal vs. vertical).  
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 Good data decomposition.  
 Minimizing/avoiding duplication of work.  

To allow the data to be mined using a number of 
cooperating agents the most obvious approach is to allocate 
different subsets of the data to each agent. There are 
essentially two fundamental approaches to 
partitioning/segmenting the data: 
(i)  Horizontal segmentation where the data is divided 
according to row number.  
(ii) Vertical partitioning where the data is divided 
according to column number.  
Note that in this chapter the term partitioning is used to 
indicate vertical sub-division of data, and segmentation to 
indicate horizontal sub-division of data. 
Horizontal segmentation is in general more straightforward. 
Assuming a uniform/homogeneous dataset it is sufficient to 
divide the number of records by the number of available 
agents and allocate each resulting segment accordingly. 
The most natural method to vertically partition a dataset is 
to divide the number of columns by the number of available 
agents so each is allocated an equal number of columns. 
Many parallel Data Mining algorithms have been 
developed based on the Apriori algorithm or variations of 
the Apriori algorithm. The most common parallel methods 
are: 
Count Distribution: This method follows a data parallel 
strategy and statically partitions the database into 
horizontal partitions that are independently scanned for the 
local counts of all candidate itemsets on each process. At 
the end of each iteration, the local counts are summed 
across all processes to form the global counts so that 
frequent itemsets can be identified.  
Data Distribution: The Data Distribution method attempts 
to utilize the aggregate main memory of parallel machines 
by partitioning both the database and the candidate 
itemsets. Since each candidate itemset is counted by only 
one process, all processes have to exchange database 
partition during each iteration in order for each process to 
get the global counts of the assigned candidate itemsets.  
Candidate Distribution: The Candidate Distribution 
method also partitions candidate itemsets but selectively 
replicates, instead of “partition-and-exchanging” the 
database transactions, so that each process can proceed 
independently.  
The steps for the Count Distribution method may be 
generalized as follows (for distributed memory 
multiprocessors): 
Step-1: Divide the database evenly into horizontal 
partitions among all processes. 
Step-2: Each process scans its local database partition to 
collect the local count of each item.  
Step-3: All processes exchange and sum up the local 
counts to get the global counts of all items and find 
frequent 1-itemsets.  
Step-4: Set level k = 2.  
Step-5: All processes generate candidate k-itemsets from 
the mined frequent (k-1) itemsets.  
Step-6: Each process scans its local database partition to 
collect the local count of each candidate k-itemset.  
Step-7: All processes exchange and sum up the local 

counts into the global counts of all candidate k-itemsets and 
find frequent k-itemsets among them.  
Step-8: Repeat (5) to (8) with k = k + 1 until no more 
frequent itemsets are found.  
 

4. THE PARALLEL TASK WITH HORIZONTAL 

SEGMENTATION (DATA-HS) ALGORITHM 
The Data Horizontal Segmentation (DATA-HS) algorithm 
uses horizontal segmentation, dividing the dataset into 
segments each containing an equal number of records. 
Association Rule Mining in this case involves the 
generation of a number of T-trees, holding frequent 
itemsets, one for each segment; and then merging these T-
trees to create one global T-tree. As a demonstration of 
Multi Agent Data Mining re-usability, this is carried out 
using the Meta Association Rule Mining task agent which 
is defined from the previous scenario. Assuming that a data 
agent representing the large dataset has been launched by a 
user, the DATA-HS Multi Agent Data Mining algorithm 
comprises the following steps: 
Step-1: User agent requests the task agent to horizontally 
segment the dataset ac-cording to the total number of 
segments required.  
Step-2: The task agent assigns and sends each data 
segment to an interested data agent; if none exist then the 
task agent launches new data agents.  
 
5.  THE PARALLEL TASK WITH VERTICAL PARTITIONING 

(DATA-VP) ALGORITHM 
The second algorithm considered in the 

exploration of the applicability of Multi Agent Data Mining 
to parallel Association Rule Mining is the Data Vertical 
Partitioning (DATA-VP). The DATA-VP algorithm 
commences by distributing the input dataset over the 
available number of workers (Data Mining agents) using a 
vertical partitioning strategy. Initially the set of single 
attributes (columns) is split equally between the available 
workers so that an allocationItemSet (a sequence of single 
attributes) is defined for each Data Mining agent in terms 
of a startColNum and endColNum: 
 
allocationItemSet = {n|startColNum < n ≤ endColNum}  
 
Each Data Mining agent will have its own 
allocationItemSet which is then used to determine the 
subset of the input dataset to be considered by the Data 
Mining agent. Using their allocationItemSet the task agent 
will partition the data among the workers (DM agents) as 
follows: 
Step-1: Remove all records in the input dataset that do not 
intersect with the allocationItemSet.  
Step-2: From the remaining records remove those attributes 
whose column number is greater than endColNum. 
Attributes whose identifiers are less than startColNum 
cannot be removed because these may still need to be 
included in the sub tree counted by the Data Mining agent.  
Step-3: Send the allocated data partition to the 
corresponding Data Mining agent.  
The input dataset distribution procedure, given an 
allocationItemSet, can be summarized as follows: 
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	∀ records ∈ input data 
if (record ∩ allocationItemSet ≡ true) record = {n|n ∈ 
record, n ≤ endColNum} else delete record 
 

TID Item Set 
1 acf 

2 b 

3 ace 

4 bd 

5 ae 

6 abc 

7 d 

8 ab 

9 c 

10 abd 
        Table 6.1: Dataset 
 

As an example, the ordered data set in Table 6.1 has items 
with 6 attributes, a, b, c, d, e and f. Assuming three worker 
agents are participating, the above partitioning process will 
result in three dataset partitions, with allocationItemSets {a, 
b}, {c, d} and {e, f}. Application of the above algorithm 
will create partitions as follows (but note that the empty 
sets, here shown for clarity, will in fact not be included in 
the partitions): 
Partition 1 (a to b): {{a}, {b}, {a}, {b}, {a}, {a, b}, {}, {a, 
b}, {}, {a, b}} 
Partition 2 (c to d): {{a, c}, {}, {a, c}, {b, d}, {}, {a, b, c}, 
{d}, {}, {c}, {a, b, d}} 
Partition 3 (e to f): {{a, c, f}, {}, {a, c, e}, {}, {a, e}, {}, 
{}, {}, {}} 
 

 
Figure-2: Vertical Partitioning of a T-tree 

Once partitioning is complete each partition can be mined, 
using the Apriori-T algorithm, in isolation while at the 
same time taking into account the possibility of the 
existence of frequent itemsets dispersed across two or more 
partitions. Figure-2 shows the resulting sub T-trees 
assuming all combinations represented by each partition are 
supported. Note that because the input dataset is ordered 
according to the frequency of 1-itemsets the size of the 
individual partitioned sets does not necessarily increase as 
the endColNum approaches N (the number of columns in 
the input dataset); in the later partitions, the lower 
frequency leads to more records being eliminated. Thus the 
computational effort required to process each partition is 
roughly balanced. The DATA-VP Multi Agent Data 
Mining task can thus be summarized as follows: 
(1) A task agent starts a number of workers (DM agents); 

these will be referred to as workers.  
(2) The task agent determines the division of 
allocationItemSet according to the total number of 
available workers (agents) and transmits this information to 
them.  
(3) The task agent transmits the allocated partition of the 
data (calculated as described above) to each worker.  
(4) Each worker then generates a T-tree for its allocated 
partition (a sub T-tree of the final T-tree) using the Apriori-
T algorithm as described below.  
(5) On completion each Data Mining (worker) agent 
transmits its partition of the T-tree to the task agent which 
is then merged into a single global T-tree (the final T-tree 
ready for the next stage in the Association Rule Mining 
process, rule generation).  
The local T-tree generation process begins with a top-level 
“tree” comprising only those 1-itemsets included in each 
worker (Data Mining agent) allocationItemSet. The Data 
Mining agent will then generate the candidate 2-itemsets 
that belong in its sub (local) T-tree. These will comprise all 
the possible pairings between each element in the 
allocationItemSet and the lexicographically preceding 
attributes of those elements shown in Figure 6.1. The 
support values for the candidate 2-itemsets are then 
determined and the sets pruned to leave only frequent 2-
itemsets. Candidate sets for the third level are then 
generated. Again, no attributes from succeeding 
allocationItemSet are considered, but the possible 
candidates will, in general, have subsets which are 
contained in preceding allocationItemSet and which, 
therefore, are being counted by some other Data Mining 
agents. To avoid the overhead involved in the X-checking 
process, in this case would require message-passing 
between the Data Mining agents concerned, X-checking 
does not take place. Instead, the Data Mining agent will 
generate its candidates assuming, where necessary, that any 
subsets outside its local T-tree are frequent. 
 

6. RESULTS AND DISCUSSIONS 
To evaluate the two approaches, in the context of the 
Extendible Multi Agent Data Mining System vision, a 
number of experiments were conducted. We consider two 
artificial datasets: (i) T20.D100K.N250.num, and (ii) 
T20.D500K.N500.num where   T = 20 (average number of 
items per transactions), D = 100K or D = 500K (Number of 
transactions), and N = 500 or N = 250 (Number of 
attributes) are used. The datasets were generated using the 
IBM Quest generator used in Agrawal and Srikant. 

 
 (a) Number of Data Partitions  (b) Support Threshold 

Figure-3: Average of Execution Time for Dataset 
T20.D100K.N250.num 

As noted above the most significant overhead of any 
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parallel system is the number and size of messages sent and 
received between agents. For the DATA-VP Extendible 
Multi Agent Data Mining System approach, the number of 
messages sent is independent of the number of levels in the 
T-tree; communication takes place only at the end of the 
tree construction. DATA-VP passes entire pruned sub 
(local) T-tree branches. Therefore, DATA-VP has a clear 
advantage in terms of the number of messages sent. 

 
 (a) Number of Data Partitions        (b) Support Threshold 

Figure-4: Average of Execution Time for Dataset 
T20.D500K.N500.num 

Figure-3 and Figure-4 show the effect of increasing the 
number of data partitions with respect to a range of support 
thresholds. As shown in Figure-3 the DATA-VP algorithm 
shows better performance compared to the DATA-HS 
algorithm. This is largely due to the smaller size of the 
dataset and the T-tree data structure which: (i) facilitates 
vertical distribution of the input dataset, and (ii) readily 
lends it to parallelization/distribution. However, when the 
data size is increased as in the second experiment, and 
further Data Mining (worker) agents are added (increasing 
the number of data partitions), the results shown in Figure 
6.4, show that the increasing overhead of messaging size 
outweighs any gain from using additional agents, so that 
parallelization/distribution becomes counter productive. 
Therefore DATA-HS showed better performance from the 
addition of further data agents compared to the DATA-VP 
approach. 
6.1 Discussion  
Multi Agent Data Mining can be viewed as an effective 
distributed and parallel environment where the constituent 
agents function autonomously and (occasionally) exchange 
information with each other. Extendible Multi Agent Data 
Mining System is designed with asynchronous, distributed 
communication protocols that enable the participating 
agents to operate independently and collaborate with other 
peer agents as necessary, thus eliminating centralized 
control and synchronization barriers. Distributed and 
parallel Data Mining can improve both efficiency and 
scalability first by executing the Data Mining processes in 
parallel improving the run time efficiency and second, by 
applying the Data Mining processes on smaller subsets of 
data that are properly partitioned and distributed to fit in 
main memory (a data reduction technique). We 
demonstrated that Multi Agent Data Mining provides 
suitable mechanisms for exploiting the benefits of parallel 
computing; particularly parallel data processing. The 
scenario also demonstrated that Multi Agent Data Mining is 
suitable for re-usability and illustrated how it is supported 
by re-employing the Meta Association Rule Mining task 
agent with the DATA-HS task. 

7.  CONCLUSION 
Multi Agent Data Mining method for parallel Association 
Rule Mining has been described so as to explore the Multi 
Agent Data Mining issues of scalability and re-usability. 
Scalability is explored by parallel processing of the data 
and re-usability is explored by re-employing the Meta 
Association Rule Mining task agent with the DATA-HS 
task. The solution to the scenario considered in this chapter 
made use of a vertical data partitioning or a horizontal data 
segmentation technique to distribute the input data amongst 
a number of agents. In the horizontal data segmentation 
(DATA-HS) method, the dataset was simply divided into 
segments each comprising an equal number of records. 
Each segment was then assigned to a data agent that 
allowed for using the Meta Association Rule Mining task 
when employed on Extendible Multi Agent Data Mining 
System. Each Data Mining agent then used its local data 
agent to generate a complete local T-tree for its allocated 
segment. Finally, the local T-trees were collated into a 
single T-tree which contained the overall frequent itemsets. 
The proposed vertical partitioning (DATA-VP) was 
facilitated by the T-tree data structure, and an associated 
mining algorithm (Apriori-T), that allowed for 
computationally effective parallel Association Rule Mining 
when employed on Extendible Multi Agent Data Mining 
System. The reported experimental results showed that the 
data partitioning methods described are extremely effective 
in limiting the maximal memory requirements of the 
algorithm, while their execution time scale only slowly and 
linearly with increasing data dimensions. Their overall 
performance, both in execution time and especially in 
memory requirements has brought significant 
improvement. 
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